
In this lecture, I will cover amplitude and phase responses of a system in some 
details.   What I will attempt to do is to explain how would one be able to obtain the 
frequency response from the transfer function of a system.  I will then show how 
once you have the amplitude and phase responses, you can predict the output 
signal for a given input signal if it is a sinusoidal.



Let us remind ourself the definitions of Laplace and Fourier transforms.  Assume the 
signal is causal (i.e. only starts at t=0), then from the above definition, it is clear that 
Fourier transform of a signal can be obtained if we substitute s = jw.
While this is true for signal, something similar is true for a system.  A system in s-
doamin is characteriszed by its transfer function (H(s) = output Y(s) / input X(s).
The frequency response H(jw) is a function that relates the output response to a 
sinusoidal input at frequency w. They are therefore, not surprisingly, related.  In fact 
the frequency response of a system is simply its transfer function as evaluated by 
substituting s = jw.
The frequency response H(jw) is in general is complex, with real and imaginary 
parts.  This is often more useful and intuitive when expressed in polar coordinate.  
That is, we can separate H(jw) into its magnitude (called amplitude response) and its 
phase component (called phase response).

is the amplitude response.
is the phase response.

Note that                        has a magnitude of 1 and a phase of                       .
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Now let us apply what is explained in the previous slides to some examples.  Given 
that the transfer fucntion of a system is:

We want to find the amplitude response and phase response of the system to two 
sinusoidal signals at the input:

The first signal is a simple cosine wave. The second is a cosine signal with a phase 
shift of 50 degrees.

First we substitute s = jw into H(s) to obtain an expression of the frequency 
response.  Note that the numerator and the denomator are both complex.
To obtain the amplitude response, we take the absolute value of H(jw).  To do this, 
we evaluate the magnitude of the numerator and the denominator separately.
To obtain the phase response, we take the arctan of the numerator, and subtract 
from it the arctan of the denominator.  (Angle of a complex number expressed as a 
vector is something you may not be familiar with.  Don’t worry.  I include this here 
for completeness.  For this course, I want to focus on amplitude response, and 
include phase response for information only.)  
The phase of the numerator is therefore  𝑡𝑎𝑛34 (Imaginary part / real part) =  
𝑡𝑎𝑛34 (w/0.1).
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Now let us consider our input signals:

The two signals have frequency at 2 and 10 (rad/sec).  
If we now plot the amplitude response                     and phase response       
we get the two plots as shown. (These can easily be obtained using Matlab.)   We 
just read off the values at the two frequencies from the two graphs!
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Instead of reading the values off the graphs (assume that the plots are not 
available), you can simply calculate the amplitude gain and phase gain at the two 
frequencies.  For  w = 2, |H(jw)| = 0.372, and the phase at this frequency is 65.3 
degrees.
How do we interpret this results?  What it means is the following:
The input cosine signal at frequency 2 rad/sec  will have its amplitude reduced 
from 1v to 0.372v.  Furthermore, there will be a phase shift of +65.3∘ added to the 
phase of the original cosine signal.



Similarly we can work out what happens for the second signals. I will leave you to 
figure it out for yourself!



In the next three slides, I want to explore the frequency response of three important 
system operations: 
1. Time delay (by T sec)
2. Differentiator (d/dt)
3. Integrator (∫ dt)
First time delay.  The transfer function of a pure time delay of T second is:

H(s) = e-sT

This has been proven in Lecture 7, slide 21.  It is known as the time-shifting property 
of Laplace transform and is one of the few facts that is worth remembering.
Therefore, the magnitude of H(jw) is 1 and the phase of H(jw) is –wT.
The important key point to takeaway is that time delay does NOT change the 
amplitude of a signal (obvious through intuition).  However it changes the phase.



Now let us consider the ideal differentiator (d/dt).  The transfer function of a 
differentiator H(jw) = jw.  Therefore the amplitude response |H(jw)| = w.  The phase 
is a constant 90 degrees or p/2.
The takeaway message here is that differentiator is a highpass filter.  It AMPLIFIES  
high frequency signals. Since noise in a signal tends to reside in high frequency 
components, differentiators usually produces an even nosier signal at the output.



Finally we can apply the same principle to derive the frequency response of an 
integrator.  Unlike a differentiator, an integrator has a lowpass filter effect.  It 
therefore suppresses high frequency components and therefore suppress noise.



Let us now apply what we have learned in this Lecture to Lab 2 experiment using 
the Bulb Box.  The box has an electronic circuit which behaves like a second-order 
system with a natural frequency of 5Hz and a very low damping ratio (i.e. highly 
oscillatory).  The output of this circuit drives the light-bulb and photo-diode circuit 
to produce an output depending on the light intensity.

We can model this system as shown in the slide mathematically as a transfer 
function G(s) in the complex frequency (s) domain:

To find the frequency response of the bulb box, we simply evaluate G(s) at s=jw into 
this equation:
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Plotting the magnitude  𝐺(𝑗𝜔) in dB vs frequency is the SAME as plotting the 
amplitude spectrum of the system.  

For the Bulb box, the frequency response is peaky at 5Hz as you would expect 
because this is the resonant frequency of the system – that is, the system ”likes” 
this frequency!  The voltage gain at this frequency is around 12dB or a gain of 
around x20. 

The system behaves like a low pass filter because at high frequency, the output is 
strongly suppressed. Beyond 20Hz, the gain drops to around -40dB (or an 
attenuation of 100).

Remember that frequency response of a system is a measure of its response to 
sinusoidal input AT STEADY STATE – that is, after all the transient has died down.  
Furthermore, because our Bulb Box is non-linear.  That means the output voltage is 
not a linear function of the input.  In general, all systems are not perfectly linear.  
We often “pretend” that the system is linear by operating over a small range of 
signal.


